

Course Objectives

- Review air quality criteria in a healthcare environment
- Discuss particle generation and dynamics related to construction and routine facilities maintenance activies
- Learn how to design and implement infection controls
 Using a revised ICRA

Course Objectives

- Review a turnover sequence for a simple and a complex construction renovation project
- $\hfill\square$ Understand the elements of an Infection Control Commissioning Plan
- □ Learn how to respond to unexpected water release events

tration: Min	imun	n Effi	cien	cy Ro	iting	Vc	ilue (MERV)
Standard 52.2 Minimum Efficiency	Composite Av	52.2-1999 Ta erage Particle Size I Size Range	ble 12-1, ME Dificiency, % in	RV Parameter Average Amestance, % by Standard	r s Minimum Resistar	Final 100	
Reporting Value	Range 1 0.30 to 1.0	Range 2 1.0 to 3.0	Range 3 3.0 to 10.0	52.1 Method	Pa	Inches of water column	
1	NA	N04	E ₃ < 20	A ₀₁₀ < 65	75	0.3	
2	NA	NIA	E ₃ < 20	65 s A _{evo} <70	75	0.3	
3	NA	NØ	E, < 20	$70 \leq A_{evp} < 75$	75	0.3	
4	NA	NØ	E ₁ < 20	$75 \le A_{\rm arg}$	75	0.3	
5	NA	N/A	$20 \leq E_3 \leq 35$	NA	150	0.6	
6	NA	NG	$35 \le E_5 < 50$	N/A	150	0.6	
7	NA	NG	$50 \leq E_1 < 70$	N/A.	150	0.6	
8	NA	NØ	$70 \le E_3$	N/A	150	0.6	
9	NA	E ₂ < 50	$\delta 5 \leq E_{0}$	N/A.	250	1.0	
10	NA	$50 \le E_2 < 05$	$\delta 5 \leq E_3$	N/A.	250	1.0	
11	N/A.	65 ≤ E ₂ <90	$85 \leq E_{\rm F}$	N/A.	250	1.0	
12	NA	$80 \le E_2$	$90 \le E_2$	NiA	250	1.0	
13	E; < 75	$90 \le E_2$	$90 \leq E_{\rm 0}$	N/A.	350	1.4	
14	$75 \leq E_1 \leq 85$	$90 \le E_2$	$90 \leq E_{\rm 0}$	NA	350	1.4	
15	$85 \le E_1 < 95$	$90 \le E_2$	$90 \leq E_{\rm F}$	N/A	350	1.4	
16	$95 \leq E_1$	$95 \le E_2$	$95 \le E_2$	N/A.	350	1.4	

Filtration	: Min	imun	n Effi	cienc	cy Ra	iting	Vc	lue	e (MERV)
		ASHRAE	52.2-1999 Tal	ble 12-1, ME	RV Paramete	rs		1	
	Standard 52.2 Minimum Efficiency Reporting Value	Composite Av	erage Particle Size 8 Size Range	Efficiency, % in	Average Amestance, % by Standard 52.1 Method	Minimum Resistar	Final Ke		
		Range 1 0.30 to 1.0	Range 2 1.0 to 3.0	Range 3 3.0 to 10.0		Pa	Inches of water column		
	1	NA	NG	E3 < 50	A _{ing} < 65	75	0.3	1	
	2	NA	NIA	$E_2 \le 20$	65 = A _{evo} <70	75	0.3	1	
	3	NA	NØ	E ₃ < 20	$70 \leq A_{dvp} < 75$	75	0.3	1	
	4	NA	NØ	E ₁ < 20	$75 \leq A_{\rm arg}$	75	0.3		
	5	NA	NIA	$20 \leq E_1 \leq 35$	N/A.	150	0.6	1	
During 1	6	NA	NIA	$35 \le E_3 \le 50$	NA	150	0.6	1.	Admin; food prep; soiled
arage	7	NA	NA	$50 \le E_3 \le 70$	NA	150	0.6		holding; bulk storage; laundry;
	8	NA	NA	70 ≤ E ₃	NA	150	0.6	1	assisted living
Operating Rms; Inpatient:	9	NA	E ₂ < 50	$\delta 5 \le E_3$	N/A.	250	1.0	1	
Care, Tx, diagnosis; Clean	10	NA	$50 \le E_2 < 0.5$	$\delta 5 \leq E_{0}$	N/A.	250	1.0	1	
supply; Clean Processing	11	N/A.	65 ≤ E ₂ <80	$85 \le E_3$	N/A.	250	1.0	1	
	12	NA	$B0 \le E_2$	$90 \le E_3$	NA	250	1.0		
	13	E1 < 76	$90 \le E_2$	$90 \le E_{\rm 3}$	N/A.	350	1.4		In-patient hospice care
Store 2	14	$75 \leq E_1 < 85$	$90 \leq E_2$	90 ≤ E3	NA	350	1.4	1	
510ge 2 🕨	15	$85 \le E_1 < 95$	$90 \le E_2$	$90 \le E_3$	NA	350	1.4	1	
1	16	$95 \le E_1$	$95 \le E_2$	$95 \le E_2$	N/A.	350	1.4	1	

Air contaminants generated during construction projects	
 General particles – Aerosols Construction dusts (sheet rock, fiberglass, wood dust, concrete dust) Metal fumes and metal dusts 	
□ Vapors – adhesives, paints, solvents	
Organic particles – Bioaerosols	
Fungi – Aspergillus sp., Fusarium sp., Rhizopus sp.	
Bacteria – water systems	

Do we all agree that construction is not a sterile process?

Pathogen (Microbe) exposure

When the cavities are open, air pressure and airflow within the cavities are disrupted

Microbes within the cavities are agitated, become airborne and move into the occupied space

Patients occupy this space

What is Infection Control?

- Systematic process that reduces the risk of infection to patients during construction projects
 - A. Infection Control Risk Assessment (ICRA)
 - B. ICRA Permit
 - · Identifies infection controls for the task
 - c. Infection Control Plan
 - · Details on how the infection controls will be implemented

A. Infection Control Risk Assessment

- Multidisciplinary Infection Control Team
- Infection Preventionist
- Construction CoordinatorFacilities Operations
- Safety & Security
- Environmental Services
- Construction Project Manager
- Architect

A. Infection Control Risk Assessment (ICRA)

- Determines level of risk to patients and defines controls to reduce risk
- □ 3 step method
 - Identify type of construction (nature & scope)
 - Identify patient or staff risk group
 - Determine the level of infection control classification
 - Defines the controls that are needed to reduce or eliminate risk to patients

Risk Group		Construction	on Activity	
	Type 'A'	Type 'B'	Type 'C'	Type 'D'
Group 1	Class 1	Class 2	Class 2	Class 3/4
Group 2	Class 1	Class 2	Class 3	Class 4
Group 3	Class 1	Class 3	Class 3/4	Class 4
Group 4	Class 3	Class 3/4	Class 3/4	Class 4

Does the information in the ICRA Permit provide sufficient information for the contractor or Facilities Maintenance to prepare and implement effective infection controls?

Construction expectation	n interpret Is	tation of	infectior	control:	s eq IP
Activity – above	e ceilina inves	tigation in C)R corridors		
,					
Sten 3: Assign	Class Based on	Prior Assessm	onte:		
Step 5. Assign a	Dased on	TENO ASSESSI	ents.		_
Risk Level	Construction	Activity			1
	Type 'A'	Type 'B'	Type 'C'	Type 'D'	1
Lowest Risk	Class 1	Class 2	Class 2	Class 3/4	1
Medium Risk	Class 1	Class 2	Class 3	Class 4	1
High Risk	Class 1	Class 2	Class 3/4	Class 4	1
Highest Risk	Class 2	Class 3/4	Class 3/4	Class 4	1
	\sim				-

CLASS 1 Date:	A. Minimize raising dust from E. Areas suspected of water damage, past construction operations. B. Dorow within the two part bit he knot construction of the second bit he knot closed B. Construction of the second bit he knot closed B. Construction of the second bit he knot closed B. Construction operations of the second bit he knot closed B. Construction operations of the second bit he knot closed B. Construction operations of the second bit he knot closed B. Construction operations of the second bit he knot closed B. Construction operations of the second bit he knot closed B. Construction operations of the second bit he knot closed B. Construction operations of the second bit he knot closed B. Construction operations of the second bit he knot closed B. Construction operations of the second bit he knot closed B. Construction operations of the second bit he knot closed B. Construction operations of the second bit he knot closed B. Construction operations of the second bit he knot closed B. Construction operations of the second bit he knot closed B. Construction operations operations of the second bit he knot closed B. Construction operation operations ope
Initial:	C. Immediately replace any celling tile displaced during visual inspection. D. Immediately clean any dust that may have been created femal evaluates.
	A Provide active means of preventing thorme dust from dispersing into thorsphere. B State of the
CLASS 2	 B. Seal of very doors with the tape or H. Wet mop and/or vacuum with HEPA – Long Mask tape. Filtered vacuum before leaving area.
Date:	C. Block off and seal air vents. D. Remove or isolate HVAC system in areas whore work is being performed. I. Using extracts and evit Using extracts and evit
Initial:	E. Outside exhaust locations must be 30 feet from air intake locations uness otherwise roted. E. Lighty mist debris and contain construction waste before transport in tighty covered containers. Debris should be removed daal, Do not board elevators containing patients when removing

What do these expectations mean to an unprepared contractor?

An increase in costs

Labor
 Materials

 $\hfill\square$ Grumpy guys that take shortcuts to save time and money

Conditions a	nd Factors of Conte	aminant Transmission
Contaminant Source	Transmission	Pathway to patient
Personnel clothing	Fall off walking through corridors	Airborne and re-entrainment Shared traffic route
Equipment (ladder)	Fall off during movement	Airborne and re-entrainment Shared traffic route
Ceiling tiles	Damage during removal and placement	Airborne and re-entrainment Shared traffic route
Ceiling cavity	Pressurized cavity	Airborne (small particle diameter) Shared traffic route

Dust in the ceiling cavity

Contaminant Source	Transmission	Controls
Personnel clothing	Fall off walking through corridors	Vacuum clothing Bunny suit ensemble Night/weekend
Equipment (ladder)	Fall off during movement	Vacuum and then wipe clean with disinfectant Night/weekend
Ceiling tiles	Damage during removal and placement	Containment cube with HEPA filfered negative air machine
Ceiling cavity	Pressurized cavity	Containment cube with HEPA filtered negative air machine

containions ai		
Contaminant Source	Transmission	Pathway to patient
Personnel clothing	Fall off walking through corridor	Airborne and re-entrainment Shared traffic route
Equipment (drywall saw)	Fall off during movement	Airborne and re-entrainment Shared traffic route
Drywall dust & waste	Generated during cutting and removal	Airborne Direct proximity to patients and staff
Wall cavity	Depressurized wall cavity into isolation room	Airborne (small particle diameter) Direct transmission to patient room

Contaminant Source	Transmission	Controls
Personnel clothing	Fall off walking through corridors	Vacuum clothing
Equipment (drywall saw)	Fall off during movement	Vacuum and then wipe clean with disinfectant
Drywall dust	Generated during cutting and removal	Containment – cutout box, poly walls, side panel HEPA Cart, filtered directional airflow
Waste materials	Generated during movement	Tight and clean waste container
Wall cavity	Depressurized cavity	Directional airflow, Remove patient fra

Information needed for the ICRA and Construction Permit

Will air handling unit (AHU) be turned off?
 What areas will be affected?

- $\hfill\square$ For above ceiling work, determine if ceiling cavity is pressurized.
- $\hfill\square$ What building materials will be transferred to the work location?
- What equipment will be transferred to the work location?

Information needed for the ICRA and Construction Permit

- What waste materials will be generated?
 Where will recycle dumpster be located?
 Where will waste dumpster be located?
 Can waste be removed through window chute?
- $\hfill\square$ What noise levels will be generated and when?
- Will vibration be generated and when?

Information needed for the ICRA and Construction Permit

- Will there be disruptions to:
 - Med gases
 - Electrical power
- Fire detection / suppression
- Water supply
- Emergency exit routes
- Will there be core drilling through floors?
- Does the scope include new domestic plumbing?
- Will existing domestic plumbing be interrupted?

Class Ex	lass Exercise: Transmission			
Problem: Ce low. Solution: Inst	ntral Sterile Supply (Sterile Processing, SPD) hu	umidity is to		
Contaminant Source	Transmission	Pathway to Patient		
Personnel clothing	Fall off walking through corridors	Airborne, shared route		

Class Ex	ercise: Transmission		
<u>Problem</u> : Central Sterile Supply (Sterile Processing, SPD) humidity is to low. <u>Solution</u> : Install a duct humidifier downstream of the Reheat Coil (RHC)			
Contaminant Source	Transmission	Pathway to Patient	
Personnel clothing	Fall off walking through corridors	Airborne, shared route	
Equipment	Fall off during movement	Airborne, shared route	
Ladder	Fall off during movement	Airborne, shared route	
Waste containers	Dust/dirt dislodged during movement. Lids not tight fitting	Airborne, shared route	
Building & Waste materials	Dust/dirt dislodged during movement.	Airborne, shared route	
Ceiling cavity	Dust/dirt settled on upper surface of ceiling tiles. Dust/dirt dislodged during movement. Pressurized ceiling cavity.	Airborne, shared route	

Let's look at some mechanical drawings and notes

 $\hfill\square$ SPD walls

- SPD Ventilation and Mechanical Legend
- D Mechanical Demo and Notes
- D Mechanical Remodel and Notes

Summary: Controls along the traffic route

- Designated traffic routes- patients, staff & construction crew
- $\hfill\square$ Contractor or EVS cleans traffic route
- Movement of construction materials
 - Clean carts / covered materials
- $\hfill\square$ Removal of waste materials
- Clean carts out of work zone & into facility
- $\hfill\square$ Bunny suits and shoe covers
- □ Vacuum personnel clothing

Non-rigid containment barrier

Environmental containment unit (ECU) Rigid containment barrier

Clas	Class Exercise: Hazards and Controls			
<u>Proble</u> low. <u>Solutio</u>	<u>m</u> : Central St <u>n</u> : Install a du	erile Supply (Sterile Proces ct humidifier downstream o	sing, SPD) humidity is to of the Reheat Coil (RHC)	
Contamin	ant Source	Transmission	Controls	

ICRA Exercise

<u>Problem</u>: Central Sterile Supply (Sterile Processing, SPD) humidity is to low. <u>Solution</u>: Install a duct humidifier downstream of the Reheat Coil (RHC)

Sequence to build containments

- Do your math how does blocking SA, RA, EX affect system balance?
- 2. Depressurize the space by isolating SA
- 3. Filter RA MERV 8
- 4. Build containment walls and anteroom
- 5. Place tacky mats
- 6. Install micromanometers

Sequence to build containments

- 6. Install HEPA filtered negative air machines (isolate RA)
- 7. Collect pressure measurements in adjacent rooms
- $_{\rm 8.}$ $\,$ Install above ceiling sheeting monitor pressures with ceiling open $\,$
- 9. Perform IP inspection

The IP inspection

- Check pressure measurements under all conditions
 Open ceiling
 - Holes in walls
 - Core drill holes in floors
- Will require multiple inspections throughout the project

Infection Control Plan

- Manometer calibration requirements and methods
- Auto-dialer installation and program methods
- Auto-dialer contact list
- $\hfill\square$ Response to manometer alarms
- Documentation of manometer readings
- Clean-duct protocols

Infection Control Plan

- Construction area entry during non-work hours
- Construction cleaning requirements
- Infection control inspections and corrective actions
- Bringing building systems back on-line
- Turnover sequence and responsibilities
- Infection Control Commissioning

Infection Control Commissioning

Verification that newly renovated or constructed patient care areas meet infection prevention design criteria

- Visual inspections
- Pressure differential measurements
- Air quality monitoring
- Water quality monitoring

Infection Control Commissioning

Rooms meet ACH design criteria

- Space meets design pressure relationships
- □ AHU and/or point of use filtration efficiency
- EVS Terminal cleaning efficiency
- □ Water Quality and Air Quality

		1010101	STED-BY-STED DDOCEDUDE		
			STEP-DT-STEP PROCEDORE		
Step	Date/Time Start	Date/Time Complete	Description	Action By	Complete
1			Plumbing tie-ins complete; plumbing disinfection performed	MEP	
2			Daily water flush	GC	
3			All supply and return air grills are securely covered. HEPA filtered negative air is still depressurizing the work area.	GC	
4			Perform and complete a detailed construction clean - remove dust and debris from ALL surfaces	GC	
5		-	Infection Prevention inspection	IP	
6		<u> </u>	EVS performs a triple terminal clean	EVS	
7		<u> </u>	Infection prevention inspection	IP	
8			Barriers are removed, negative air machines off, plastic over supply and return grills is removed.	GC	
9		1	EVS performs terminal clean.	EVS	
10			Testing, adjusting and balancing can occur. ICRA needed for access above the ceiling.	MEP	
11			EVS performs daily terminal clean each day to the date of first patient occupancy	EVS	
12		1	TAB and Commissioning complete	GC	
13		<u> </u>	CO awarded	GC	
14			Daily water flush to the date of first patient occupancy	EVS	

Step	Date/Time	Date/Time	Description	Action By	Completed
	Start	Complete			
1			Plumbing tie-ins complete; plumbing disinfection performed	MEP	
2			Daily water flush	GC	
3		All supply and return air grills are securely covere	All supply and return air grills are securely covered. HEPA	GC .	
			filtered negative air is still depressurizing the work area.		
4			Perform and complete a detailed construction clean -	GC	
· ·			remove dust and debris from ALL surfaces		
5			Infection Prevention inspection	IP	
6			EVS performs a triple terminal clean	EVS	
7			Clean AHU, install new pre and final filters		
8			Infection Prevention inspection of AHU and supply air	IP	
	diffusers in OR – after completion of final filter installation				
		Conditioned supply air on; work area depressurized using			
9		construction exhaust; return air grills filtered; return air	GC		
			exhausted at the AHU		
10			GE install equipment with access to above ceiling	Vendor	
11			GE out of ceiling	Vendor	
			EVS terminal clean followed by daily terminal cleaning to	EVS	
			the date of first patient occupancy		
13			IP inspection of AHU, supply air diffusers and all work area	IP	
			Particle counting monitoring and viable samples in all work		
14	areas – if acceptable, perform terminal clean and remove	IP			
		barriers (return air functional/exhaust air removed)			
15			EVS to perform terminal clean after barriers down	EVS	
16			Testing, adjusting and balancing can occur. ICRA needed	MED	
			for access above the ceiling.	MBP	
17			TAB and Commissioning complete	GC	
18			CO awarded	GC	
19			Daily water fluch to the date of first nationt occupancy.	EVS	

